3.53 \(\int \sqrt {a+b \sin (c+d x)} \, dx\)

Optimal. Leaf size=62 \[ \frac {2 \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}} \]

[Out]

-2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(
b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/d/((a+b*sin(d*x+c))/(a+b))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2655, 2653} \[ \frac {2 \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sin[c + d*x]],x]

[Out]

(2*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(d*Sqrt[(a + b*Sin[c + d*x])/(a + b)
])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rubi steps

\begin {align*} \int \sqrt {a+b \sin (c+d x)} \, dx &=\frac {\sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{\sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\\ &=\frac {2 E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.22, size = 61, normalized size = 0.98 \[ -\frac {2 \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{4} (-2 c-2 d x+\pi )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sin[c + d*x]],x]

[Out]

(-2*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(d*Sqrt[(a + b*Sin[c + d*x])/(a
+ b)])

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {b \sin \left (d x + c\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sin(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sin \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sin(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 0.19, size = 239, normalized size = 3.85 \[ -\frac {2 \left (a -b \right ) \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, \left (\EllipticE \left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a +\EllipticE \left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b -a \EllipticF \left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right )-\EllipticF \left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b \right )}{b \cos \left (d x +c \right ) \sqrt {a +b \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sin(d*x+c))^(1/2),x)

[Out]

-2/b*(a-b)*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*(Ell
ipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a+EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(
a+b))^(1/2))*b-a*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))-EllipticF(((a+b*sin(d*x+c))/(a-
b))^(1/2),((a-b)/(a+b))^(1/2))*b)/cos(d*x+c)/(a+b*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sin \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sin(d*x + c) + a), x)

________________________________________________________________________________________

mupad [B]  time = 4.58, size = 55, normalized size = 0.89 \[ \frac {2\,\mathrm {E}\left (\frac {c}{2}-\frac {\pi }{4}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\sqrt {a+b\,\sin \left (c+d\,x\right )}}{d\,\sqrt {\frac {a+b\,\sin \left (c+d\,x\right )}{a+b}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sin(c + d*x))^(1/2),x)

[Out]

(2*ellipticE(c/2 - pi/4 + (d*x)/2, (2*b)/(a + b))*(a + b*sin(c + d*x))^(1/2))/(d*((a + b*sin(c + d*x))/(a + b)
)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \sin {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*sin(c + d*x)), x)

________________________________________________________________________________________